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A numerical method based on sinc collocation approximation for a class of nonlinear
weakly singular Volterra integral equations of a second kind with non-smooth solution
is given. The numerical method given here combines a sinc collocation method with an
explicit iterative process that involves solving a nonlinear system of equations. We provide
an error analysis for the method. It is shown that the approximate solution converges to
the exact solution at the rate of

ffiffiffiffiffi
M
p

expð�c
ffiffiffiffiffi
M
p
Þ, where M is the number of collocation

points and c is some positive constant. Some numerical results for several test functions
are given to confirm the accuracy and the ease of implementation of the method.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Many physical, chemical, and biological problems are modeled as nonlinear Volterra integral equations, such as
reaction–diffusion problems, crystal growth, models describing the propagation of a flame (see e.g. [23,10] and especially
[14] for many physical and engineering applications), mathematical models describing the behavior of viscoelastic mate-
rials in mechanics, superfluidity problems, and some newer applications on the study of soft tissues like mitral valves of
the aorta in human heart (see [9] and the references therein).

This work is concerned with study of the numerical analysis of a class of nonlinear Volterra integral equation of a second
kind which has a weakly singular kernel of the form
uðxÞ ¼ f ðxÞ þ
Z x

a

Kðx; tÞ
ðx� tÞa

upðtÞdt; ð1Þ
where a 6 x, t 6 b, p > 1, and 0 < a < 1. Eq. (1) can arise in connection with some heat conduction problems with various class
of mixed-type boundary conditions. For example, Lighthill [15] was among the pioneers to derive an integral equation that
can be transformed into the above equation which describes the temperature distribution of the surface of a projectile mov-
ing through a laminar layer when f ðxÞ ¼ 1; Kðx; tÞ ¼ ð�

ffiffiffi
3
p

=pÞt1=3; a ¼ 2=3; p ¼ 4 and a = 0, b = 1. Even for analytic functions
f(x) and K(x, t), it is well known (e.g. see [5], and [1]) that derivative of the solution of the above equation, u0(x) is singular at
the left edge point of the interval of integration, [a,x], and this is expected to cause a loss in global convergence of a collo-
cation method. In the case of Eq. (1), u0(x) behaves as (x � a)�a as x ? a+.
. All rights reserved.
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Numerical approximations methods such as quadrature rules, finite differences, finite elements, and so on are generally
use polynomials as basis functions to obtain approximate solutions that are sufficiently accurate in region where the func-
tion to be approximated is smooth (see e.g., [8,13]). However, such methods fail significantly in a neighborhood of singular-
ities of the function. On the other hand, the numerical approximations obtained by using Whittaker’s cardinal function yield
much better results than those obtained by methods using polynomials in the case when singularities are present at an end-
point of the interval. These methods, however, may or may not yield better results in the absence of singularities. For a com-
prehensive study of numerical methods for Volterra integral equations we refer to [16,4,5], and the references therein, for
single exponential sinc approximation methods to [17,26], and [27], for double exponential sinc transformation methods
to [21,28] and [29].

In the present paper we develop a sinc collocation method for the nonlinear integral Eq. (1) that is based on the work of
[24] for linear integral equation. [24] points out that ‘‘the extension of the method to nonlinear integral equations seems to
be a more challenging task at this point.” To our knowledge, no such extension is extant in the literature for the method gi-
ven in [24]. Recently, [21] modified the method of [24] using a double exponential transformation for the linear case again
and most recently [22] extending the method [24] to Fredholm case. In [24] the error analysis is based on an ambiguous lim-
itation such as for all ‘‘M in a practical range,” where M is the number of collocation points. In this paper, we set up the equa-
tions that gives the approximate solution for the integral equation in such a way that avoids such limitation. This is a sharp
contrast between our approach and those in [24] and [21]. This paper is organized as follows. In Section 2 we present some
definitions and preliminary results on sinc collocation method of single exponential function. Section 3 is devoted to a de-
tailed derivation of our numerical algorithm, convergence and error analysis. Section 4 contains some numerical examples
illustrating the applications of method described here that considers the rule of number of collocations. We end the paper
with some closing remarks and conclusions.

2. Some preliminary results using sinc functions

In this section, we state some basic results about sinc function approximation. These important properties will enable us
to solve the nonlinear singular Volterra integral equation. The basic sinc function is defined as
sincðxÞ ¼
sin px
px ; x – 0;

1; x ¼ 0:

(
ð2Þ
Let j be an integer and h be a positive number. We define the jth translate of sinc function by
Sðj; hÞðxÞ � sincðx=h� jÞ ð3Þ
for step size h, evaluated at x. Given a function f defined and bounded for all x in (�1,1), the Whittaker’s cardinal function of
f is defined by
Cðf ;hÞðxÞ ¼
X1

j¼�1
f ðjhÞSðj; hÞðxÞ: ð4Þ
Now, we want to extend the approximations on R to the finite interval (a,b). Since the integral equation is defined over a
finite interval, and the sinc function maps R onto a finite interval, we need some transformation /(x) that maps a finite inter-
val (a,b) onto R. Let
/ðzÞ ¼ log
z� a
b� z

� �
; ð5Þ
be a conformal map which carries the eye-shaped complex domain
D ¼ z : arg
z� a
b� z

� ���� ��� < d < p
n o

ð6Þ
onto the open infinite strip
Dd ¼ fz 2 C : jImðzÞj < d < pg: ð7Þ
Note that at x = kh with k an integer, the translate of sinc reduces to the Kronecher delta, i.e., S(j,h)(kh) = sinc (k � j) = dkj. We
define the basis functions on (a,b) by
Sðj; hÞð/ðxÞÞ ¼ sincð/ðxÞ=h� jÞ: ð8Þ

Setting
/ðxkÞ ¼ log
xk � a
b� xk

� �
¼ kh ð9Þ
we get
xk ¼ /�1ðkhÞ ¼ aþ bekh

1þ ekh
: ð10Þ
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Since /(a) = �1, and /(b) =1, then we have
Sðj;hÞð/ðaÞÞ ¼ Sðj;hÞð/ðbÞÞ ¼ 0: ð11Þ
Thus
Sðj;hÞð/ðxkÞÞ ¼ sinc /ðxkÞ=h� jð Þ ¼ sincðk� jÞ ¼ dkj: ð12Þ
Now, given a function f defined on (a,b), we define the truncated cardinal function by
CM;Nðf ;hÞðxÞ ¼
XN

j¼�M

f ðxjÞSðj;hÞð/ðxÞÞ ð13Þ
for some appropriate integers M and N to be determined later. This function agrees with f at each grid point xk = /�1(kh),
k = �M, . . .,N, since we have
CM;Nðf ;hÞðxkÞ ¼
XN

j¼�M

f ðxjÞSðj; hÞð/ðxkÞÞ ¼
XN

j¼�M

f ðxjÞdkj ¼ f ðxkÞ: ð14Þ
For convenience, from hereafter we set the interval of integration to be (0, l), thus
/ðxÞ ¼ log
x

l� x

� �
; ð15Þ
and for the collocation process, we select the grid points so that xn = /�1(nh) = lwn, with 0 6wn 6 1, where
wn ¼
enh

1þ enh
: ð16Þ
Finally, we cite the following two results from [24] that their proofs and other similar results can be found in [17, Chapter 3].

Theorem 2.1 [24]. Let the function f be analytic and bounded on domain D, where D is defined as in (6). Further, suppose there
are positive constants b, c, C1 and C01 such that
jf ðxÞj 6
C1xb; 0 < x 6 1

2 l
C 01ðl� xÞc; 1

2 l < x < l

(
: ð17Þ
Then, taking h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pd=ðbMÞ

p
and N = [[bM/c]] + 1, we have
jf ðxÞ � CM;Nðf ;hÞðxÞj 6 C2

ffiffiffiffiffi
M
p

exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pdbM

p� �
; ð18Þ
where the constant C2 only depends on f, d, b and c.
Theorem 2.2 [24]. Let function f be analytic on domain D with
Z
/�1ðxþLÞ

jf ðzÞdzj ! 0 as x! �1; ð19Þ
where L = {Im (z):jIm (z)— < d}, D is defined as in (6), and
lim
u!@D

inf
u # D

Z
u
jf ðzÞdzj <1: ð20Þ
Further, suppose there are positive constants b, c, C3 and C03 such that
jf ðxÞj 6
C3xb�1; 0 < x 6 1

2 l

C 03ðl� xÞc�1
; 1

2 l < x < l

(
: ð21Þ
Then, taking h0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pd=ðcM0Þ

p
and N0 = [[cM0/b]] + 1,
Z l

0
f ðxÞdx� h0

l

XN0
j¼�M0

f ðxjÞxjðl� xjÞ

������
������ 6 C4 exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pdcM0

q� �
; ð22Þ
where the constant C4 only depends on f, d, b and c.
3. Approximation based on sinc collocation

Eq. (1) can be written as
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uðxÞ ¼ f ðxÞ þ Ta;puðxÞ; 0 6 x 6 l; 0 < a < 1; p > 1; ð23Þ
where Ta,p:C[0,l] ? C[0,l] denotes the weakly singular nonlinear operator
Ta;puðxÞ ¼
Z x

0

Kðx; tÞ
ðx� tÞa

upðtÞdt; 0 6 x 6 l: ð24Þ
It is assumed that the functions f(x) and K(x,t) are smooth on their respective domains, [0, l] and {(x,t):0 6 t 6 x 6 l}. Then
under these smoothness conditions, the classical results [6] guarantees the existence of a unique solution u(x) 2 C[0,l].

Now, we want to introduce a sinc collocation method for approximating the solution u of the above integral equation over
the interval [0, l]. We assume that u is analytic and bounded on the domain D, but, in general, it has unbounded derivative at
x = 0, i.e., u0(x) = O(1/xk) as x ? 0+ where 0 < k < 1. We define the function U(x) corresponding to u(x) by
UðxÞ ¼ uðxÞ � uð0Þ þ uðlÞ � uð0Þ
l

x
� 	

ð25Þ
that satisfies U(0) = U(l) = 0. Since we want that U0(x) behaves as x�k as x ? 0+ and U(x) ? 0 as x ? l�, we assume that
jUðxÞj 6
C1x1�k; 0 < x 6 1

2 l

C 01ðl� xÞ; 1
2 l < x < l

(
: ð26Þ
Thus U(x) satisfies the hypotheses of Theorem 2.1 with b = 1 � k and c = 1. So, the truncated cardinal function for u(x) from
(25) using (13) can be written as
CM;Nðu; hÞðxÞ ¼ uð0Þ þ
XN

j¼�M

UðxjÞSðj;hÞð/ðxÞÞ þ
uðlÞ � uð0Þ

l
x: ð27Þ
Since U(x) decreases slower in the neighborhood of zero, the left end point of the interval, than the right end point at l, thus
we must have M P N. Using (11) and (12), we note that (27) interpolates u at 0, l and each grid point xj, for j = �M, . . .,N. Tak-
ing the step size h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pd=ðð1� kÞMÞ

p
and N = [[(1 � k)M]] + 1, we have
juðxÞ � CM;Nðu;hÞðxÞj 6 C5

ffiffiffiffiffi
M
p

expð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pdð1� kÞM

q
Þ; ð28Þ
where C5 is a positive constant.
Eq. (27) and inequality (28) suggest that the exact solution of (23) might be well approximated by a trial solution of the

form
uM;NðxÞ ¼ c�M�1 þ
XN

j¼�M

cjSðj;hÞð/ðxÞÞ þ
cNþ1

l
x: ð29Þ
Then we use the quadrature rule of Theorem 2.2 to obtain an approximation of Ta,p given by
Ta;p
N0 ;M0uðxÞ ¼ x1�ah0

XM0
n¼�N0

Kðx; xwnÞupðxwnÞwnð1�wnÞ1�a
; ð30Þ
where wn is given by (16). Expression (30) provides an accurate approximation of Ta,pu(x) when the product K(x,�)up is ana-
lytic and bounded on the domain D where D is defined as in (6). Indeed, taking h0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pd=ðM0ð1� aÞÞ

p
, N0 = [[(1 � a)M0]] + 1,

and using Theorem 2.2, we get
jTa;puðxÞ � Ta;p
M0 ;N0uðxÞj 6 C6 expð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pdð1� aÞM0

q
Þ ð31Þ
for all x 2 [0, l] and M0 is not necessarily the same as M. This can be done if the functions K(x,�) are analytic on the domain D
and are uniformly bounded on this domain for all x 2 [0,l]. Thus our numerical approximate solution uM,N(x) must satisfy
uM;NðxÞ ¼ f ðxÞ þ Ta;p
N0 ;M0uM;NðxÞ; ð32Þ
where uM,N(x) is given by (29). To find the coefficients of uM,N(x) we evaluate (32) at the grid points xn, n = �M, . . .,N + 1. First
we note that (11), (23), (24) and (29) give
uM;Nð0Þ ¼ c�M�1 ¼ f ð0Þ; ð33Þ
and
uM;NðxiÞ ¼
f ð0Þ þ ci þ cNþ1

l xi; i ¼ �M; . . . ;N;
f ð0Þ þ cNþ1; i ¼ N þ 1:

(
ð34Þ
Then evaluating (32) at the grid points gives the following system of equations
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uM;NðxiÞ ¼ f ðxiÞ þ Ta;p
N0 ;M0uM;NðxiÞ; i ¼ �M; . . . ;N þ 1; ð35Þ
where from (30), we have
Ta;p
N0 ;M0uM;NðxiÞ ¼ x1�a

i h0
XM0

n¼�N0
Kðxi; xiwnÞup

M;NðxiwnÞwnð1�wnÞ1�a
: ð36Þ
The system of equations in (35) completely determines a nonlinear system of M + N + 2 equations to be solved for ci and then
the approximate solution of Volterra integral equation is given by Eq. (29).

3.1. Solving nonlinear system of equations in (35)

The system of Eq. (35) can be written as F(c) = 0 where F : RMþNþ2 ! RMþNþ2 and c 2 RMþNþ2. Solutions of this system are
closely associated with finding global minimum of W(c) = FT(c)F(c). All practical approaches to solve such a nonlinear system
are iterative and currently, there are much interests for finding a more efficient method for solving such nonlinear systems,
e.g. see [2,7,11,18], and [19]. System of Eq. (35) can be solved by a quadratically convergent Newton’s method [20] or by a
superlinearly convergent quasi-Newton’s type such as Broyden’s method ([3,25]) or by a family of Jacobian-free techniques
known as Newton–Krylov methods, e.g. see the comprehensive review article [12] and the references therein. The Jacobian of
(35) must be non-singular for the Newton’s method to converge. The Jacobian matrix for (35) can be written succinctly as
J ¼
AðxiÞ � I ..

.
B

� � � � � � � � �

0 ..
.
�1

0
BBB@

1
CCCA; ð37Þ
where A(xi) = {ai,j(xi)} is a square matrix of size (M + N + 1)2, with
ai;jðxiÞ ¼ x1�a
i h0p

XM0
n¼�N0

Kðxi; xiwnÞ uðmÞM;NðxiwnÞ
� �p�1

w2
nð1�wnÞ1�aSðj;hÞð/ðxiwnÞÞ ð38Þ
B = (xi/l) is a M + N + 1 column vector, and I is the identity matrix. So, J is non-singular if A(xi) � I is non-singular. That is, A(xi)
is non-singular if 1 is not one of its eigenvalues. To assure J is a well behaved non-singular matrix and have a unique solution,
we require that 0 < det(A(xi) � I) < 1. This gives a bound on the free parameters, M, N, h. The Newton’s iterative process is
given by c(k+1) = c(k) � J(c(k))�1F(c(k)). In practice one does not need to find inverse of J. To avoid calculating the Jacobian in-
verse, instead, we solve the matrix system J(c(k))y(k) = F(c(k)) for y(k) and then the new iterate is calculated from
c(k+1) = c(k) � y(k). We can summarize the result as follows:

Proposition 1. The standard Newton’s method when applied on system of nonlinear equations in (35) leads to a unique solution if
0 < det(A(xi) � I) < 1 where the matrix A(xi) is given in (38).

The convergence requirement stated in the above proposition is not easy to implement. In addition, the above process
involves solving a system of equations for each iteration, it is costly. To reduce the calculations costs, we propose that
(32) be rewritten as the following explicit iterative scheme
uðmþ1Þ
M;N ðxÞ ¼ f ðxÞ þ Ta;p

N0 ;M0u
ðmÞ
M;NðxÞ ð39Þ
with the initial starting function uð0ÞM;NðxÞ. To avoid guessing such an initial starting function, we evaluate (39) at the grid
points xi which leads to the following set of nonlinear system of equations for cj given by
uðmþ1Þ
M;N ðxiÞ ¼ f ðxiÞ þ x1�a

i h0
XM0

n¼�N0
Kðxi; xiwnÞ uðmÞM;NðxiwnÞ

� �p
wnð1�wnÞ1�a

; ð40Þ
where
uðmÞM;NðxiwnÞ ¼ f ð0Þ þ
XN

j¼�M

cðmÞj Sðj; hÞð/ðxiwnÞÞ þ
cðmÞNþ1

l
xiwn ð41Þ
and
uðmþ1Þ
M;N ðxiÞ ¼

f ð0Þ þ cðmþ1Þ
i þ cðmþ1Þ

Nþ1
l xi; i ¼ �M; . . . ;N;

f ð0Þ þ cðmþ1Þ
Nþ1 ; i ¼ N þ 1:

8<
: ð42Þ
The above iterative system can be solved to obtain cðmÞj ’s when initial values cð0Þj ’s are selected properly. Rewriting the above
system as an explicit iterative system for cðmþ1Þ

j ’s, we get
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ðcðmþ1ÞÞT ¼ ðg�MðcðmÞÞ; . . . ; gNþ1ðcðmÞÞÞ
T
; ð43Þ
where cðmþ1Þ
j ¼ gjðcðmÞÞ are given by
cðmþ1Þ
i ¼ f ðxiÞ � f ð0Þ � xi

l
f ðlÞ � f ð0Þð Þ þ h0xi

XM0
n¼�N0

x�a
i Kðxi; xiwnÞ uðmÞM;NðxiwnÞ

� �p
� l�aKðl; lwnÞ uðmÞM;NðlwnÞ

� �pn o
wnð1�wnÞ1�a

ð44Þ

for i = �M, . . .,N and
cðmþ1Þ
Nþ1 ¼ f ðlÞ � f ð0Þ þ l1�ah0

XM0
n¼�N0

Kðl; lwnÞ uðmÞM;NðlwnÞ
� �p

wnð1�wnÞ1�a
: ð45Þ
The Jacobian of (43) can be written as
G ¼
AðxiÞ � xi

l AðxNþ1Þ ..
.

X

� � � � � � � � �

Y ..
.

bNþ1;Nþ1ðxNþ1Þ

0
BBB@

1
CCCA; ð46Þ
where the components of matrix A are given in (38), X ¼ ðbi;Nþ1ðxiÞ � xi
l bi;Nþ1ðxNþ1ÞÞ is an M + N + 1 column vector and Y =

(aN+1,j(xN+1)) is an M + N + 1 row vector. Here, the components of X are given by
bi;jðxiÞ ¼
x2�a

i h0p
l

XM0
n¼�N0

Kðxi; xiwnÞ uðmÞM;NðxiwnÞ
� �p�1

w2
nð1�wnÞ1�a

: ð47Þ
For uniqueness of the solution of (43) we must have jGi;jj 6 r
MþNþ1 < 1, with r < 1 for each component of G. We note that for

each x 2 [0, l]
kSðj;hÞð/ðxÞÞk2
2 ¼

XM

j¼�N

sin2ðpð/ðxÞ=h� jÞÞ
ðpð/ðxÞ=h� jÞÞ2

¼ sin2ðp/ðxÞ=hÞ
p2

XM

j¼�N

1

ð/ðxÞ=h� jÞ2

6
sin2ðp/ðxÞ=hÞ

p2

N þM
ð/ðxÞ=h�MÞð/ðxÞ=hþ NÞj j þ

1

ð/ðxÞ=hþ NÞ2

 !

6
sin2ðp/ðxÞ=hÞj

p2

1
N
þ 1

M
þ 1

N2

� �
: ð48Þ
Analyzing the convergent requirement leads to the following result.

Proposition 2. Let (c(m)) be the sequence given in (43). The sequence is convergent if
l1�ah0p~k~up�1q
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
þ 1

M
þ 1

N2

s
< 1; ð49Þ
where ~k; ~u represent the maximum values of absolute values of Kðl; lwnÞ;uðmÞM;NðlwnÞ, respectively, h0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pd=ðM0ð1� aÞÞ

p
;

N0 ¼ ½½ð1� aÞM0�� þ 1;N ¼ ½½ð1� kÞM�� þ 1 and
q ¼
XM0

n¼�N0
ðwnÞ2ð1�wnÞ1�a

6 j 1� ð2� aÞenh0

ð2� aÞð1� aÞh0ð1þ enh0 Þ2�a j
M0

�N0 j: ð50Þ
Inequality (49) provides a bound on M, and M0 so that the sequence in (43) converges. Another restriction on M0 is pro-
vided by
Z 1

0

tdt
ð1� tÞa

� h0
XM0

n¼�N0
w2

nð1�wnÞ1�a

�����
����� 6 C7 exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pdð1� aÞM0

q� �
; ð51Þ
where C7 is a constant and the value of integral is 1
ð1�aÞð2�aÞ. To characterize the order of convergence of iterates in (43) in

terms of the rate of convergence of the relative residuals, we assume that the sequence (c(m)) converges to c* as m ?1,
where c* is the solution of c* = g(c*) given by (43). Then calculating kc(m+1) � c*k = kg(c(m)) � g(c*)k by using (43) and expand-
ing the terms in the right hand side using Taylor series expansions, we conclude with the following result.

Proposition 3. Let (c(m)) be the sequence given in (43) which converges to c* as m ?1, then
kcðmþ1Þ � c�k ¼ O kcðmÞ � c�kp
 �
: ð52Þ
That is, c(m) ? c* with strong order of convergence of at least p, p > 1.
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3.2. Numerical algorithm

We select M0 so that it satisfies inequality (51) and for the sake of simplicity we choose M = M0. Then from the relations
given in Proposition 2, we calculate N, N0, h and h0. Finally, we use inequality (49) to check the validity of the computed
solution.

� Initialization steps.
a = 1, k = 0, m = 0, select � and d as tolerance, cð0Þi ¼ 1 for each i,W(c) = FT(c)F(c).
� Coarse approximation steps.

We use a steepest descent process to find a reasonably suitable initial approximation for c(0) for the refinement steps.
c(k+1) = c(k) � arW(c(k)).
If W(c(k+1)) < � go to refinement steps, if not, check if W(c(k+1)) < W(c(k)) then set a = a + 1 and c(k) = c(k+1), evaluate c(k+1),
otherwise set a0 = a and minimize a single variable function T(a) = c(k) � arW(c(k)) over interval [a0 � 1,a0] then calculate
c(k+1).
� Refine approximation steps.

Let c(0) = c(k+1). Use the iterative system (43) to approximate c(m+1). Stop when kc(m+1) � c(m)k < d.
� Approximate solution uM,N(x) using (29), and estimate the error.
� Check the validity of the solution.

3.3. Error analysis

Let u(x) and uM,N be the exact solutions of (23) and (32), respectively. The error in the mth step of our successive approx-
imation is given by EðmÞM;N ¼ sup06x6ljuðxÞ � uðmÞM;NðxÞj. To get an upper bound on EðmÞM;N , we note that
juðxÞ � uðmÞM;NðxÞj 6 juðxÞ � CM;Nðu;hÞðxÞj þ jCM;Nðu;hÞðxÞ � CM;NðuðmÞM;N;hÞðxÞj þ jCM;NðuðmÞM;N; hÞðxÞ � uðmÞM;NðxÞj: ð53Þ
Now, we want to get an upper bound on each term of the right hand side of (53). By Theorem 2.1, we have
sup
06x6l

juðxÞ � CM;Nðu;hÞðxÞj 6 C8

ffiffiffiffiffi
M
p

exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pdð1� kÞM

q� �
ð54Þ
and
sup
06x6l

jCM;NðuðmÞM;N ;hÞðxÞ � uðmÞM;NðxÞj 6 C9ðmÞ
ffiffiffiffiffi
M
p

exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pdð1� kÞM

q� �
ð55Þ
for some positive constants C8, and C9, while the latter one depends on m. It remains to find an upper bound for the second
term on the right hand side of (53). Using Schwarz inequality, we note that
CM;Nðu; hÞðxÞ � CM;NðuðmÞM;N; hÞðxÞ
��� ��� ¼ XN

j¼�M

UðlwjÞ � cðm�1Þ
j

� �
Sðj;hÞð/ðxÞÞ

��� ��� 6 kUðlwjÞ � cðm�1Þ
j k2kSðj; hÞð/ðxÞÞk2: ð56Þ
Now we can consider w ¼
PN

j¼�Mnjc
ðm�1Þ
j as a step function approximating U(x) over the interval [0, l] where nj is the

characteristic function over interval [xj, xj+1] which assumes one on this interval and zero outside of that. The conver-
gence of approximate solution to the exact solution guarantees the existence of a positive constant C10 depending on
m such that
kUðlwjÞ � cðm�1Þ
j k2 6

C10

2MþNþ1 : ð57Þ
Using (48), (56), and (57), we get
CM;Nðu; hÞðxÞ � CM;NðuðmÞM;N; hÞðxÞ
��� ��� 6 C0ðmÞ

ffiffiffiffiffiffiffiffiffi
M�1

p
2�M�N : ð58Þ
Finally combining (53), (54), (55), and (58), we conclude
EðmÞM;N 6 CðmÞ
ffiffiffiffiffi
M
p

expð�c
ffiffiffiffiffi
M
p
Þ; ð59Þ
where c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pdð1� kÞ

p
, and for some positive constant C(m) depending on m. Choosing h relatively small and thus M rela-

tively large can cause the error to be small. The preceding analysis can be summarized as the following result.

Theorem 3.1. Let u be the solution of the weakly singular Volterra integral Eq. (23). Suppose u is analytic and bounded on the
domain (6). Further, suppose the functions f(x), and K(x,�) of (23) are analytic on their corresponding domains and are uniformly
bounded on these domains for all x 2 [0, a]. Then (29) gives the approximate solution with error bound given by (59) when the step
size is chosen so that the inequality (49) holds.



G.-A. Zakeri, M. Navab / Journal of Computational Physics 229 (2010) 6548–6557 6555
4. Numerical results

Let us consider the following integral equations as our test problems. The exact solution of first three examples is
uðxÞ ¼

ffiffiffi
x
p

and the exact solution of the last one is uðxÞ ¼
ffiffiffi
x3
p

.

Table 1
Maximu
0.5, 0.6

m

20
40
60
80

Table 2
Maximu
15, 20,

m

30
50
70
90
uðxÞ ¼ �3px2

8
þ

ffiffiffi
x
p
þ
Z x

0

1

ðx� tÞ1=2 u3ðtÞdt; ð60Þ

uðxÞ ¼
ffiffiffi
x
p

15
ð15� 16x2Þ þ

Z x

0

1

ðx� tÞ1=2 u4ðtÞdt; ð61Þ

uðxÞ ¼ �5px3

2
þ

ffiffiffi
x
p
þ
Z x

0

1

ðx� tÞ1=2 u5ðtÞdt; ð62Þ

uðxÞ ¼
ffiffiffi
x3
p

15
ðx� 15Þ þ

Z x

0

1

ðx� tÞ1=3 u3ðtÞdt: ð63Þ
The numerical experiments are implemented in C/C++. The programs are executed on a PC with 2.4 GHz Intel Core 2 Duo
processor with 2 GB 667 MHz DDR2 SDRAM. The CPU times for the integral Eq. (61), were ranging from 67 s to 172 s depend-
ing on the size of M. For integral Eq. (61), we have used a ¼ 1=2; p ¼ 4; k ¼ 1=2; d ¼ p=2; h0 ¼ p

ffiffiffiffiffiffiffiffiffiffiffi
2=M0p

;

N0 ¼ ½½M0=2�� þ 1; h ¼ p=
ffiffiffiffiffi
M
p

and N = [[M/2]] + 1. So, it is sufficient to select the values of M and M0. In Tables 1 and 2, we list
the maximum relative errors for several selected values of M and M0, over the intervals [0,1] and [0,25]. As it can be seen
from these two tables, the method gives smaller relative error over smaller interval. This is expected since more function
evaluation is taking place over interval [0, l] and the round off error is playing a bigger role. Estimating the condition number
for the system of equations in (35) is numerically very expansive, and for this reason it should be avoided as many authors
do. Instead of estimating the condition number of system of Eq. (35), we use inequality (49) to check the validity of calcu-
lated solution. Our local estimation of condition number of (35), associated with the integral Eq. (61) is ranging from 45.14 to
57.42 over the interval [0,1] at each collocation point for M = 4. These values are reasonably small and show the calculated
solutions are reliable as it is evidenced from the maximum errors for each case. We get similar results for the other examples.
That is, as l gets larger the method works better when number of collocations, M is chosen larger and increase the number of
iterations to increase accuracy of the results. In Tables 3 and 4, we have presented the overall maximum errors for the inte-
gral Eqs. (60)–(63). We use the maximum number of iterations for Table 3 to be 20, 25, 30, 25, respectively, in Table 4, the
number of iterations to 30, 35, 45, 30, respectively. As suggested by inequalities (49) and (51), to have the same level of accu-
racy, for bigger value of p, requires a larger value for M, the number of collocation points, to get the same order of accuracy.
This is supported by numerical calculations as illustrated in Tables 3 and 4. Finally, as pointed out in Section 1, the main
advantage of the sinc collocation method is that it gives a better result when derivative of the solution is singular at the left
edge of interval of integration. All examples given in this section are supporting this property, i.e., derivative of their solu-
tions behave as x�a for some a > 0. In addition the sinc method has an exponential rate of convergence which is achieved by
using small number of collocation points as illustrated here.
m relative error estimates over the interval [0,1], for M, M0 = 2, 4, 8, where m represents the number of iterations. Estimates are obtained at x = 0.2, 0.4,
, 0.8, and 1.0.

Maximum relative error estimates for (61)

M0 = M = 2 M0 = M = 4 M0 = M = 8

1.02E�2 1.92E�3 1.72E�4
3.25E�3 4.31E�4 3.04E�5
2.45E�4 6.01E�6 2.13E�6
4.34E�6 7.42E�7 1.42E�7

m relative error estimates over the interval [0,25], for M, M0 = 2, 4, 8, where m represents the number of iterations. Estimates are obtained at x = 1, 5, 10,
and 25.

Maximum relative error estimates for (61)

M0 = M = 2 M0 = M = 4 M0 = M = 8

3.01E�2 6.54E�3 1.12E�3
6.22E�3 6.51E�4 3.01E�4
1.13E�4 1.72E�5 3.03E�5
6.36E�5 7.14E�6 1.37E�6



Table 3
Maximum relative error estimates over the interval [0,1], for M, M0 = 2, 4, 8, the number of iterations are 20, 25, 30, 25, respectively. Estimates are obtained at
x = 0.2, 0.4, 0.5, 0.6, 0.8, and 1.0.

Example Maximum relative error estimates

M0 = M = 2 M0 = M = 4 M0 = M = 8

1 1.02E�2 1.92E�3 1.71E�4
2 4.11E�2 3.52E�3 2.31E�4
3 5.32E�2 2.76E�3 5.12E�4
4 3.45E�2 3.71E�3 3.61E�4

Table 4
Maximum relative error estimates over the interval [0,25], for M, M0 = 2, 4, 8, the number of iterations are 30, 35, 45, 30, respectively. Estimates are obtained at
x = 1, 5, 10, 15, 20, and 25.

Example Maximum relative error estimates

M0 = M = 2 M0 = M = 4 M0 = M = 8

1 3.01E�2 6.54E�3 1.12E�3
2 5.42E�2 4.23E�3 2.63E�3
3 6.11E�2 3.87E�3 4.39E�3
4 2.76E�2 5.89E�3 2.62E�3
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4.1. Conclusions and closing remarks

This work is concerned with the extension of a collocation sinc approximation method to a class of nonlinear Volterra
integral equation of the second kind that can arise in connection with many applications such as heat distribution problems.
The method first introduced in [24], and extended for double exponential transformation in [21] and [22]. The original meth-
od of [24] had an ambiguous restriction on the number of collocation points which was later clarified for linear case in [21]
and recently extended for linear Fredholm integral equations in [22]. We were able to rewrite a system of nonlinear equa-
tions in an explicit iterative form that it is easy to implement. We have provided the convergence and error analysis for the
method. One of the possible extensions of the method given here is to use double exponential transformation as used by
several authors recently and in connection with this is particular method for linear case by [21]. Another possible extension
of the method with combination of double exponential transformations as base functions for collocation grid points is to
approximate the derivative of a function to solve a class of nonlinear Volterra integro-differential equations. The values of
sinc methods lie in the fact that they behave well and produces better results when solution function has singularities. Col-
location methods provide a natural grading for selecting the nodes in the quadrature method that the unknown function
needs to be evaluated.
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